Chaotic Hamiltonian Ratchets with Cold Atoms
ثبت نشده
چکیده
Currently there is a great amount of scientific research directed at ratchet devices and mechanisms. Initially stimulated by a need to understand biological systems, the field has widened to encompass mesoscopic and atomic physics as well as quantum effects. The great majority of this effort has been directed at systems which include noise (Brownian ratchets). Comparatively little work has been undertaken on deter ministic ratchets (i.e. with no noise but possibly including dissipation). Prior to our work there had only been two studies of Hamiltonian ratchets (no noise or dissipation) which concluded tha t only mixed-phase space mechanisms were feasible. However, the work in this thesis proposes a new fully chaotic, noise-free, Hamiltonian ratchet. This ratchet system is studied in both the quantum and classical regimes and is found to produce, reversible, non-zero currents for well closen parameter values. The ratchet mechanism proposed in this thesis is has now been implemented experimentally with ultra-cold cesium atoms in a pulsed optical lattice. Optimum system parameters are suggested to produce the best experimental signature for the ratchet. The work presented here has inspired farther experimental work for the specific Hamiltonian of the system.
منابع مشابه
Directed chaotic transport in Hamiltonian ratchets.
We present a comprehensive account of directed transport in one-dimensional Hamiltonian systems with spatial and temporal periodicity. They can be considered as Hamiltonian ratchets in the sense that ensembles of particles can show directed ballistic transport in the absence of an average force. We discuss general conditions for such directed transport like a mixed classical phase space. A sum ...
متن کاملQuantum ratchets in dissipative chaotic systems.
Using the method of quantum trajectories, we study a quantum chaotic dissipative ratchet appearing for particles in a pulsed asymmetric potential in the presence of a dissipative environment. The system is characterized by directed transport emerging from a quantum strange attractor. This model exhibits, in the limit of small effective Planck constant, a transition from quantum to classical beh...
متن کاملClassical and quantum Hamiltonian ratchets.
We explain the mechanism leading to directed chaotic transport in Hamiltonian systems with spatial and temporal periodicity. We show that a mixed phase space comprising both regular and chaotic motion is required and we derive a classical sum rule which allows one to predict the chaotic transport velocity from properties of regular phase-space components. Transport in quantum Hamiltonian ratche...
متن کاملPeriodically driven quantum ratchets: Symmetries and resonances
We study the quantum version of a tilting and flashing Hamiltonian ratchet, consisting of a periodic potential and a time-periodic driving field. The system dynamics is governed by a Floquet evolution matrix bearing the symmetry of the corresponding Hamiltonian. The dc-current appears due to the desymmetrization of Floquet eigenstates, which become transporting when all the relevant symmetries ...
متن کاملQuantum transport of cold atoms
Cold atom devices permit the exploration of novel forms of quantum transport that are difficult or impossible to realize in traditional electron transport setups. Under the action of an external driving, long-term coherent atom motion can be quite sensitive to the initial switching conditions even in the presence of interactions [1]. If the driving violates spaceand time-inversion symmetry simu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014